Invitation for Teachers and Others who have Ideas to Share about Teaching Science

Do you have thoughts you would like to share about teaching science as a practice rather than as a body of knowledge?  Is teaching students to do experiments more important than teaching them to explain theories?  Or, are there significant risks and problems with trying to do too much investigation in the classroom?  Please submit a short essay to Topics of Debate at Issues in Earth Science.  The essay should respond to a seed thesis, which I reproduce below (with which you can either agree, disagree, or take a different tack entirely).  If you would like to submit an essay for consideration, please check out the IES submission guidelines.

Seed Thesis for Science teacher:  conveyer of information or practitioner and mentor?’

by Russ Colson

In Learning to Read the Earth and Sky, published by NSTA Press, and in several recent articles in teacher journals, I argue passionately that science teaching should be more about engaging in science with students than in conveying information about science to them.  I am substantially invested in the idea.  And not me only.  One of my colleagues at Minnesota State University Moorhead, Jennifer Lepper, likes to say “I am not a content delivery mechanism.”

Science is something that we do, not something that we know, and students should learn how to do it, not simply accept and memorize the discoveries that others have made before them.  This is a philosophy espoused by multiple iterations of science standards, including the National Science Standards (1996) and the more recent Next Generation Science Standards (2013).

Yet, the idea of science teacher as conveyor of information persists, perhaps encouraged by the realization that many practices of science, like arguing from evidence and constructing models, cannot be done without a substantial knowledge of the science that has come before us.  We can’t simply throw students into the fog of an investigation, without constraint or guidance, and expect any meaningful understanding to emerge from a forty-five minute class period.  After all, most scientific discoveries took years, if not decades or centuries, to uncover.

Even so, for an investigation to arise from the students’ own questions, experimental designs, and interpretations, it simply can’t be pre-canned into a curriculum.  If it’s already set in stone in a curriculum, then any student contribution is simply a pretense. The goal of such an investigation becomes to ‘get the right answer” and not to interpret and understand observations.  I propose that an authentic investigation requires pursuit of unexpected questions and interpretation of unplanned results.  This in turn requires an engaged teacher who is a practitioner of science and can therefore act as mentor and guide as students work through their investigation.

However, the idea of teacher as scholar, practitioner, and mentor has some substantial cultural headwinds to work against.  There is an entrenched idea that teachers convey information in memorable ways, but are not themselves participants in investigation, and certainly not scholars.

What do you think?  Please feel free to disagree, or take a different tangent.

Dr. C.

Share Button

Conversations on Science Education with a Colleague

It’s quite a delight when your children become colleagues and friends. This past weekend, I talk with my son who teaches physics at Santa Fe College in Gainesville, Florida. Our conversation turned to a passion that we share: science education. Some of our conversation, and thoughts on the connection between science education and science fiction, are shared in Putting Science back in Science Fiction at The Writer’s Corner of Issues in Earth Science.

Russ Colson

Share Button

Teaching Science and the Lost Adventure Story

It’s been a while since we wrote a new blog entry. We’ve been busy writing a book: Learning to Read the Earth and Sky. After an intense three years of proposing, writing, rewriting, reviewing, revising, editing, and re-editing, we finished our comments on the proofs last week and sent them back to the publisher (Please look for our book from NSTA Press this coming November 2016!)

Thus, we can get back to our blog.

While reviewing the proofs for our book, a line caught my eye as a potential seed for a blog entry: “The important aspects of understanding, at least in science, are found in the process of discovery, not in the conclusions at the end.”

Teaching science is not about what we know–the facts and theories that centuries of study have uncovered. Rather, it is about how we do the uncovering. How can we—not just the scientists–uncover the nature of our universe through observation, experiment, modeling, and arguing from evidence? It is the doing of science that we should be teaching in our classrooms, not the knowing of science.   Thus, Learning to Read the Earth and Sky is not about the story of the earth and sky that someone else has told us, but rather it’s about how we can learn to read that story on our own.

That is a true adventure.

Adventure stories have fallen on hard times in the science fiction world—at least adventure as I define it. For me, an adventure story must have exploration and discovery at its heart. That discovery might be internal (discovering yourself), external (discovering a new world or an ancient space ship mysteriously buried in rock on Mars), or intellectual (discovering the workings of a mysterious force or how a strange feature came to be as you find it today).   But there must be discovery.

That’s different from Action. The focus of an action story is on conflict and challenge.

It’s also different from the Thriller. A thriller focusses on the chase as the protagonist tries to escape some threat or pursuer that is always just a step behind.

In the Adventure story—or the science classroom–the protagonists are the pursuers as they try to catch an idea, find a lost world, or understand a mysterious event.

I have trouble finding my kind of adventure story in the published books of today, and even more trouble finding it in movies. I wonder if the death of my kind of adventure story began with the emergence of video stores. Adventure stories were lumped with action stories in sections called Action/Adventure. Maybe because they shared a first letter. Maybe because someone imagined that since adventure often has action in it those two genres must be the same.

Or maybe adventure died because we no longer have an accessible frontier. Any frontiers we can imagine are quite far away from what we can reach in the immediate future. Without a frontier to beckon us to explore, our hunger for discovery wanes and we focus instead on the action and intrigue in the more immediate life that we know.

Even so, mysteries remain in science and that makes exploration and discovery possible. Mysteries remain in dark energy, in the unexpected geological activity revealed on the surface of Pluto, and in how the Earth’s core can generate such a powerful magnetic field when Mars’ does not. There are still real frontiers in science. Adventure stories—and good science teachers—can still beckon us to explore them.

Russ Colson

Share Button

New Story and Essay Published and ‘Theory’ in the Science Classroom

We have a new short story published!  Can Marie’s knowledge of geology solve a mystery and get her big brother out of trouble?  Check it out at Fiction for the Classroom. 

To accompany the story, we offer some suggested activities and labs for teachers of middle and high school. 

We also have a new Topic for Debate essay.  Read about Comic Book Science and its impact of science literacy!   at Topics for Debate

The topic for our next issue is ‘Theory in the Science Classroom’. You are invited to respond to the seed-essay below. Please feel free to submit your essay for consideration for publication in our next issue.  We pay!  Submission guidelines.

 

Seed Thesis for ‘Theory in the Science Classroom’, by Russ Colson

Most of us are aware that the word ‘theory’ is used differently in common conversation than it is in science.  For example, as we approach the highly-anticipated release of Star Wars VII, one might say “My theory is that Yoda will come back from the dead and save the day!”  On the other hand, in science, the word ‘theory’ refers to a conceptual synthesis of observational data that has been extensively tested in the lab and field.  It is not someone’s idle speculation subject to casual challenge with limited data.

The misunderstanding of the meaning of scientific theory has led some people to think that alternative ‘theories’ should be presented in the science classroom, such as ideas arising from religious beliefs.  Although religious ideas are an essential part of the human experience and should be included in a well-rounded education (in the view of this writer!), most scientists and science teachers don’t believe those ideas belong in the science classroom because they do not arise from the methods and practices of science, nor do they meet the scientific criteria to be considered a theory.

However, do we teachers, in our eagerness to emphasize the well-tested nature of scientific theories, present theories as the goal of learning?  Instead of teaching the processes of questioning, testing, and reasoning that provide the foundation for theories—what the Next Generation Science Standards (2013) call the ‘Practices of Science and Engineering’—do we jump to the theories themselves as the end product of education?  Do we sometimes even treat the theories as ‘facts’ to be memorized instead of a synthesis of observations derived through the practices of science?

It seems to me that even the Next Generation Science Standards–despite their goal of encouraging more practice of science in the classroom–emphasize theories a bit much, especially theories that are politically controversial.  Consider for example the importance placed on teaching the theory of evolution in the life sciences or the importance placed on telling students that climate change is real in the earth sciences.

In placing so much emphasis on the theories that have been derived by the practices of science, we short-shrift the practices of science.  Students then arrive in my college classroom without the ability to distinguish between theory and the evidence for it.  In fact, sometimes students even get confused on which is more foundational, the theory or the observation that supports it.  One student wrote “Some people don’t understand that (an observation) can’t be true if it goes against scientific theory.”

Yikes.

 So what are your thoughts?  What is the best balance in the classroom for teaching theories versus teaching the methodologies by which we have figured out and tested those theories?

 Dr. C.

 

 

Share Button

Uncertainty in Science

Another Kind of Shades of Gray: 

Uncertainty in Earth Science and how we teach it

You may remember the Italian geoscientists who were convicted of manslaughter in October of 2012 for failing to warn the public about an earthquake that struck L’Aquila, Italy in 2009.  I remember the dismay I felt, given the complexity of Earth’s systems, that people would expect such certainty from science.  I wondered if the human need for certainty is part of our nature, or if the way we teach science contributes to the public’s misperception that science is never ambiguous.

 This week, I read Naomi Lubick’s article “Be Prepared: Navigating the risks of hazards research” in the January 2014 edition of Earth (http://www.earthmagazine.org/article/be-prepared-navigating-risks-hazards-research).  She explores the thicket of misunderstanding that exists between scientists’ understanding of “uncertainty” and the public’s need to have answers in black and white.  The article reminded me of those questions and made me think about the difficulty my students have in understanding uncertainty.

Recently, I had students read eyewitness accounts of earthquake damage and estimate the intensity of shaking based on the qualitative Modified Mercalli scale.  To help them evaluate their judgments, we reviewed the “answer key”, but, because data from some locations was inadequate for determining the Mercalli ranking, a question mark replaced some answers.  A student told the class “I think I’m uncomfortable with the answer key having question marks.”  Students don’t expect uncertainty in science.  Students think that in science there is right, and there is wrong.  There are no question marks.

Some things we don’t know about earthquakes.  Other things we do know, and with a high degree of certainty.  But some things, we know only with a significant measure of uncertainty.  It is the last of these that are hardest to teach or to convey to the public.  Perhaps one approach is to point out that scientists don’t claim to be able to predict earthquakes exactly, but they do have some ability to predict earthquakes within uncertainty limits.  For example, the legend to the 2008 United States National Seismic Hazard Maps ( USGS) states “Colors on this map show the levels of horizontal shaking that have a 2-in-100 chance of being exceeded in a 50-year period.” However, just stating probabilities doesn’t necessarily convey meaning, especially for middle and high school students.  How exactly can teachers help students understand what this statement means?

Maybe one way to help students understand uncertainty is through a variation of the common math exercise of flipping coins.  Instead of flipping one penny 10 times, consider flipping 10 pennies at the same time.  How many of them will come down heads?  Well, on average, 5.  But in practice, it will only be 5 about a quarter of the time.  It will be either 4 or 6 about 41% of the time (66% chance of being within “1” of 5).  And it will be 3 or 7 about 23% of the time (an 89% chance of being within “2” of 5).  Even though our answer of “five on average” is quite true, there is an uncertainty in our prediction.  Likewise with earthquakes, we may know what’s going to happen on average, but predicting exactly what will happen and when is uncertain.

What have you tried that helps students understand uncertainty?  How did it work?  Does our responsibility to teach “correct information” get in the way of exploring how science works? Please share!

–Mary

 

Share Button

About Teacher’s Corner

Teacher’s Corner is a place to consider Earth Science topics of particular interest to teachers, like how to develop lab activities, or what’s going on in a student’s head when they ask a question, or how the new Next Generation Science Standards can be implemented in the classroom.

Your friendly Chief Blogger is Mary Colson.  Mary has taught 8th grade Earth Science for over twenty years in Tennessee, Texas, and Minnesota.  She develops almost all of her own activities and curricula, and is always eager to hear other people’s ideas!

Guest Blogger is Russ Colson (Dr. C).  Russ teaches college geology and planetary science.  He established the Earth Science Teaching major at Minnesota State University Moorhead

Russ and Mary are coauthors of the NSTA Press book Learning to Read the Earth and Sky

This blog is hosted on http//earthscienceissues.net, a resource for writers and teachers interested in discussing Earth Science issues.

Share Button